
Page | 1

C PROGRAMMING AND DATA STRUCTURES

UNIT-II

TOPICS:-

1. Functions
2. types of functions
3. Recursion and argument passing
4. Pointers
5. storage allocation
6. pointers to functions
7. expressions involving pointers
8. Storage classes – auto, register, static, extern
9. Structures
10. Unions
11. Strings
12. string handling functions
13. Command line arguments.

Topic 1: Functions

A function is a group of statements that together perform a task. Every C program has at
least one function, which is main(), and programmer can define more than one function in
a program.
A function can also be referred as a method or a sub-routine or a procedure, etc.

Topic 2: Types of Functions

 There are two types of functions in C programming.

1. Library Functions: are the inbuilt or pre definedfunctions which are declared in the

C header files. Ex:- scanf(), printf(), sqrt(),pow(),gets(), puts(), ceil(), floor() etc.

2. User-defined functions: are the functions which are created by the C programmer,

so that he/she can use it many times. It reduces the complexity of a big program and

optimizes the code.

Library functions are the inbuilt function in C that are grouped and placed at a common
place called the library. Such functions are used to perform some specific operations.
 For example, printf is a library function used to print on the console. The library functions
are created by the designers of compilers. All C standard library functions are defined
inside the different header files saved with the extension .h. We need to include these
header files in our program to make use of the library functions defined in such header
files. For example, To use the library functions such as printf/scanf we need to include
stdio.h in our program which is a header file that contains all the library functions
regarding standard input/output.

Page | 2

Types of user defined functions:-A function may or may not accept any argument. It may
or may not return any value. Based on these facts, There are four different methods to
define function.

o function without arguments and without return value

o function with arguments and with return value

o function without arguments and with return value

o function with arguments and without return value

Return Value

A C function may or may not return a value from the function. If you don't have to return
any value from the function, use void for the return type.

Example without return value:

void hello()

{

printf("hello c");

}

Example with return value:

int get()

{

return 10;

}

Argument:-An argument is referred to the values that are passed from one function to
another function. C functions exchange information by means of parameters or arguments.
Function Aspects:
There are three aspects of a C function.
Function declaration : A function must be declared globally in a c program to tell the
compiler about the function name, function parameters, and return type.
Function call : Function can be called from anywhere in the program. The parameter list
must not differ in function calling and function declaration. We must pass the same number
of functions as it is declared in the function declaration.
Function definition: It contains the actual statements which are to be executed. It is the
most important aspect to which the control comes when the function is called. Here, we
must notice that only one value can be returned from the function.

Page | 3

SN C function aspects Syntax

1 Function declaration return_type function_name(argument list);

2 Function call function_name(argument_list);

3 Function definition return_type function_name (argument list)
{
function body;
}

The syntax of creating function in c language is given below:

return_type function_name(data_type parameter...)
{
//code to be executed
}

How user-defined function works?

Page | 4

The execution of a C program begins from the main() function.

When the compiler encounters functionName();, control of the program jumps to

voidfunctionName()

And, the compiler starts executing the codes inside functionName().

The control of the program jumps back to the main() function once code inside the

function definition is executed.

Example program for function with argument and with return value

#include<stdio.h>

int sum(int, int); /*prototype*/

void main()

{

 int a,b,result;

 printf("\nGoing to calculate the sum of two numbers:");

 printf("\nEnter two numbers:");

 scanf("%d %d",&a,&b);

 result = sum(a,b); /*function call*/

 printf("\nThe sum is : %d",result);

}

int sum(int a, int b) /*function definition*/

{

 return a+b;

}

Input and Output:-

Going to calculate the sum of two numbers:
Enter two numbers:10
20
The sum is : 30

Page | 5

Example program for function with argument and without return value

#include<stdio.h>

void sum(int, int); /*prototype*/

void main()

{

 int a,b,result;

 printf("\nGoing to calculate the sum of two numbers:");

 printf("\nEnter two numbers:");

 scanf("%d %d",&a,&b);

 sum(a,b); /*function call*/

}

void sum(int a, int b) /*function definition*/

{

 printf("\nThe sum is %d",a+b);

}

Output

Going to calculate the sum of two numbers:

Enter two numbers 10
24

The sum is 34

Example program for function without argument and with return value

#include<stdio.h>

int sum(void); /*prototype*/

void main()

{

 int result;

 printf("\nGoing to calculate the sum of two numbers:");

 result = sum(); /*function call*/

 printf("%d",result);

}

Page | 6

int sum() /*function definition*/

{

 int a,b;

 printf("\nEnter two numbers");

 scanf("%d %d",&a,&b);

 return a+b;

}

Output

Going to calculate the sum of two numbers:

Enter two numbers 10
24

The sum is 34

Example program for function without arguments and without return value

#include<stdio.h>

void sum(void); /*prototype*/

void main()

{

 printf("\nGoing to calculate the sum of two numbers:");

 sum(); /*function call*/

}

void sum(void) /*function definition*/

{

 int a,b;

 printf("\nEnter two numbers");

 scanf("%d %d",&a,&b);

 printf("The sum is %d",a+b);

}

Page | 7

Output

Going to calculate the sum of two numbers:
Enter two numbers 10
24
The sum is 34

---***---

Topic :3 Recursion and argument passing
3.1 Recursion:-

A function that calls itself is known as a recursive function. And, this technique is known as
recursion.

The recursion continues until some condition is met to prevent it.

To prevent infinite recursion, if...else statement (or similar approach) can be used where

one branch makes the recursive call, and other doesn't.

Page | 8

Example program

 A simple example of recursion would be:

void recurse()
{
 recurse(); /* Function calls itself */
}

int main()
{
 recurse(); /* Sets off the recursion */
 return 0;
}

This program will not continue forever, however. The computer keeps function calls on a
stack and once too many are called without ending, the program will crash.

Example 1 Program for recursion

#include <stdio.h>

void printnum(int begin)

{

 printf("%d\t", begin);

 if(begin < 9)

 {

 printnum (begin + 1);

 }

 printf("%d", begin);

}

int main()

{

 printnum(0);

}

Output:

0 1 2 3 4 5 6 7 8 9

Page | 9

Example 2 Program for sum of n natural numbers using recursion

#include <stdio.h>
int sum(int n);

int main()
{

 int number, result;
 printf("Enter a positive integer: ");

 scanf("%d", &number);
 result = sum(number);

 printf("sum = %d", result);
 return 0;

}
int sum(int n)

{
 if (n != 0)

 /*sum() function calls itself*/
 return n + sum(n-1);

 else
 return n;

}

Output
Enter a positive integer:3

sum = 6

3.2 Argument passing (parameter passing mechanisms)

Functions can be invoked(called) in two ways: Call by Value or Call by Reference.

The parameters passed to function are called actual parameters whereas the parameters

received by function are called formal parameters. (or) The parameters in function call

are called actual parameters, whereas the parameters in function definition are called

formal parameters.

Call by Value

If data is passed by value, the data is copied from the variable used in for example

main() to a variable used by the function. So if the data passed (that is stored in the

function variable) is modified inside the function, the value is only changed in the

variable used inside the function. Let’s take a look at a call by value example:

Page | 10

#include <stdio.h>
void call_by_value(int x)
{
 printf("Inside call_by_value x = %d before adding 10.\n", x);
 x += 10;
 printf("Inside call_by_value x = %d after adding 10.\n", x);
}

main()
{
 int a=10;

 printf("a = %d before function call_by_value.\n", a);
 call_by_value(a);
 printf("a = %d after function call_by_value.\n", a);
}

Output:-

a = 10 before function call_by_value.
Inside call_by_value x = 10 before adding 10.
Inside call_by_value x = 20 after adding 10.
a = 10 after function call_by_value.

Call by Reference

If data is passed by reference, a pointer to the data is copied instead of the actual

variable as is done in a call by value. Because a pointer is copied, if the value at that

pointers address is changed in the function, the value is also changed in main(). Let’s

take a look at a code example:

#include <stdio.h>
void call_by_reference(int *y)
{
 printf("Inside call_by_reference y = %d before adding 10.\n", *y);
 (*y) += 10;
 printf("Inside call_by_reference y = %d after adding 10.\n", *y);
}
main()
 {
 int b=10;
 printf("b = %d before function call_by_reference.\n", b);
 call_by_reference(&b);
 printf("b = %d after function call_by_reference.\n", b);

}

Page | 11

Output:-
b = 10 before function call_by_reference.
Inside call_by_reference y = 10 before adding 10.
Inside call_by_reference y = 20 after adding 10.
b = 20 after function call_by_reference.

---***---

Topic 4: Pointers

Definition:- Pointers (pointer variables) are special variables that are used to

store addresses rather than values. Pointer is a variable that stores address of another

variable.

Like variables, pointers in C programming have to be declared before they can be

used in the program.
Declaration of pointer:-

Syntax for declaring pointer:-

data_type *pointer_variable_name;

Ex:-
int *p1;

int * p2;

Initialization of pointer:-
Ex:-

int *pc, c;

c = 5;

pc = &c;

Here, 5 is assigned to the c variable. And, the address of c is assigned to
the pc pointer.

Get Value of variable Pointed by Pointers:-

To get the value of the thing pointed by the pointers, we use the * operator. For

example:

int* pc, c;

c = 5;

pc = &c;

printf("%d", *pc); // Output: 5

Page | 12

Here, the address of c is assigned to the pc pointer. To get the value stored in that

address, we used *pc.

Example Program

#include<stdio.h>

main()

{

int number=50;

int *p;

p=&number;

printf("Address of p variable is %x \n",p);

printf("Value of p variable is %d \n",*p);

}

Output

Address of number variable is fff4
Address of p variable is fff4
Value of p variable is 50

4.1 pointer and arrays

Pointer and 1d-array:-
Pointer can also be defined to an array or 1d-array.

Ex:- int a[4]={4,7,9,2};
 int *p;

 p=&a[0]; or p=a;

Page | 13

Notice that, the address of &x[0] and x is the same. It's because the variable

name x points to the first element of the array.

From the above example, it is clear that &x[0] is equivalent to x. And, x[0] is

equivalent to *x .

Similarly,

 &x[1] is equivalent to x+1 and x[1] is equivalent to *(x+1).

 &x[2] is equivalent to x+2 and x[2] is equivalent to *(x+2).

 ...

 Basically, &x[i] is equivalent to x+i and x[i] is equivalent to *(x+i).

Example Program
#include<stdio.h>
main()
{
 int x[4] = {1, 2, 3,9};
 int *p = x;
 int I;
 for (i = 0; i < 3; i++)
 {

 printf("%d", *(x+i));
 }
}
Output:
1 2 3

Pointer and 2d-array:-

Pointer can also be defined to an array or 1d-array.
Ex:- int a[2][2]={{4,7},{9,2}};

 int *p;
 p=&a[0][0]; or p=a;

Page | 14

Note:- name of a 1-D array is a constant pointer to the 0th element. In the case, of a 2-D array, 0th
element is a 1-D array. Hence in the above example, the type or base type of arr is a pointer to an
array of 4 integers. Since pointer arithmetic is performed relative to the base size of the pointer. In
the case of arr, if arr points to address 2000 then arr + 1 points to address 2016 (i.e 2000 + 4*4).

In the case of a 2-D array, 0th element is a 1-D array. So the name of the array in case of a 2-
D array represents a pointer to the 0th 1-D array. Therefore in this case arr is a pointer to
an array of 4 elements. If the address of the 0th 1-D is 2000, then according to pointer
arithmetic (arr + 1) will represent the address 2016, similarly (arr + 2) will represent the
address 2032.

From the above discussion, we can conclude that:

arr points to 0th 1-D array.
(arr + 1) points to 1st 1-D array.
(arr + 2) points to 2nd 1-D array.

Page | 15

*(arr + i) points to the address of the 0th element of the 1-D array. So,
*(arr + i) + 1 points to the address of the 1st element of the 1-D array
*(arr + i) + 2 points to the address of the 2nd element of the 1-D array

Hence we can conclude that:
*(arr + i) + j points to the base address of jth element of ith 1-D array.

On dereferencing *(arr + i) + j we will get the value of jth element of ith 1-D array.

*(*(arr + i) + j)
Example Program:-

#include<stdio.h>
imain()

{
 int arr[3][4] = {

 {11,22,33,44},
 {55,66,77,88},

 {11,66,77,44}
 };

 int i, j;
 for(i = 0; i < 3; i++)

 {
 for(j = 0; j < 4; j++)

 {
 printf("%d\t",*(*(arr + i) + j));

 }
 printf("\n");

 }
}
Output:-
11 22 33 44
55 66 77 88
11 66 77 44

---***---

Page | 16

Topic 5: Storage allocation (dynamic memory allocation)

Memory allocation is the process of setting memory in a program to be used to
store variables, arrays, structures, etc.
 There are two basic types of memory allocation:

The process of allocating memory at compile time is known as static memory allocation.

Ex:- int a,b;

For variables a and b 2 bytes of memory is allocated at compile time itself – static allocation

The process of allocating memory at runtime is known as dynamic memory allocation.

Dynamic memory allocation is done with help of pointers.
The predefined functions which are used to allocate memory at runtime are called dynamic
memory allocation functions.

To allocate memory dynamically, library functions
are malloc() , calloc(), realloc() and free() are used. These functions are defined in
the <stdlib.h> header file.

malloc():- This function is used to allocate memory at run time for a variable.

Syntax of malloc():

ptr = (castType*) malloc(size);

Example:

ptr = (float*) malloc(100 * sizeof(float));

The above statement allocates 400 bytes of memory. It's because the size
of float is 4 bytes.

calloc():- This function is used to allocate memory at run time for an array.

Syntax of calloc():

ptr = (castType*)calloc(n, size);

Example:
ptr = (float*) calloc(25, sizeof(float));

The above statement allocates contiguous space in memory for 25 elements of

type float.

Page | 17

free():- Dynamically allocated memory created with either calloc() or malloc() doesn't get

freed on their own. You must explicitly use free() to release the space.

Syntax of free():

free(ptr);

This statement frees the space allocated in the memory pointed by ptr.

realloc():- If the dynamically allocated memory is insufficient or more than

required, you can change the size of previously allocated memory using

the realloc() function.

Syntax of realloc():-

ptr = realloc(ptr, x);

Here, ptr is reallocated with a new size x.

Example program for malloc() and free()

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int *n;
 n=(int *)malloc(4);
 printf("Enter n value: ");
 scanf("%d", n);
 printf("value of n= %d",*n);
 free(n);
 return 0;
}

Output:-

Enter n value: 56
value of n= 56

Page | 18

Example program for calloc() and free()

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int n, i, *ptr, sum = 0;
 printf("Enter number of elements: ");
 scanf("%d", &n);
 ptr = (int *) calloc(n,sizeof(int));
 printf("Enter elements: ");
 for(i=0;i<n;i++)
 {
 scanf("%d",(ptr + i));
 }
 printf("elements of array are:\n");
 for(i=0;i<n;++i)
 {
 printf("%d\t",*(ptr + i));
 }
 free(ptr);
 return 0;
}

Output:-

Enter number of elements: 5
Enter elements: 5
8
4
9
12
elements of array are:
5 8 4 9 12

Page | 19

Example program for realloc() and free()
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
main()
{
 char *a;
 a=(char *)malloc(10);
 strcpy(a,"hyderabad");
 printf("string is %s",a);
 a=realloc(a,15);
 strcpy(a,"secunderabad");
 printf("string now is %s",a);
 free(a);
}

Output:-

string is hyderabad

string now is secunderabad

---***---

Topic 6: Pointer to a function

It is possible to declare a pointer pointing to a function and also function can be called using

pointer.

Syntax:-

function_return_type(*Pointer_name)(function argument list)

Example:- int (*f2p) (int, int);

Example Program:-

int sum (int num1, int num2)
{
 return num1+num2;
}
main()
{

 int (*f2p) (int, int);
 f2p = sum;

Page | 20

 //Calling function using function pointer
 int op1 = f2p(10, 13);

 //Calling function in normal way using function name
 int op2 = sum(10, 13);
 printf("Output1: Call using function pointer: %d",op1);
 printf("\nOutput2: Call using function name: %d", op2);
}
Output:

Output1: Call using function pointer: 23
Output2: Call using function name: 23

Note:-

Pointer operators:-

Operator Meaning

* Serves 2 purpose

1. Declaration of a pointer
2. Returns the value of the

referenced variable

& Serves only 1 purpose

 Returns the address of a variable

---***---

Topic 7: Pointer Expressions and arithmetic

Page | 21

Like other variables pointer variables can be used in expressions.

Pointer Assignments

You can use a pointer on the right-hand side of an assignment statement to assign its value

to another pointer. When both pointers are the same type, the situation is straightforward.

For example:

int s = 56;
int *ptr1, *ptr2;
ptr1 = &s;
ptr2 = ptr1;

Program

main()

{

int s = 56;

int *ptr1, *ptr2;

ptr1 = &s;

ptr2 = ptr1;

/* print the value of s twice */

printf("Values at ptr1 and ptr2: %d %d \n", *ptr1, *ptr2);

/* print the address of s twice */

printf("Addresses pointed to by ptr1 and ptr2: %p %p",ptr1,ptr2);

}

Output

Values at ptr1 and ptr2: 56 56
Addresses pointed to by ptr1 and ptr2: 0240FF20 0240FF20

Pointer Arithmetic

Page | 22

We can perform addition and subtraction of integer constant from pointer variable.

Addition

ptr1 = ptr1 + 2;

subtraction

ptr1 = ptr1 - 2;

We cannot perform addition, multiplication and division operations on two pointer

variables.

For Example:

ptr1 + ptr2 is not valid

However we can subtract one pointer variable from another pointer variable. We can use

increment and decrement operator along with pointer variable to increment or decrement

the address contained in pointer variable.

For Example:

ptr1++;

ptr2--;

Multiplication

Example:

int x = 10, y = 20, z;

int *ptr1 = &x;

int *ptr2 = &y;

z = *ptr1 * *ptr2 ;

Will assign 200 to variable z.

Page | 23

Division

there is a blank space between '/' and * because the symbol /*is considered as beginning of

the comment and therefore the statement fails.

 Z=5*-*Ptr2/ *Ptr1;

If Ptr1 and Ptr2 are properly declared and initialized pointers, then the following

statements are valid:

Y=*Ptr1**Ptr2;

Sum=sum+*Ptr1;

*Ptr2=*Ptr2+10;

*Ptr1=*Ptr1+*Ptr2;

*Ptr1=*Ptr2-*Ptr1;

If Ptr1 and Ptr2 are properly declared and initialized pointers then, 'C' allows adding

integers to a pointer variable.

EX:

int a=5, b=10;

int *Ptr1,*Ptr2;

Ptr1=&a;

Ptr2=&b

http://www.atnyla.com/library/images-tutorials/c-pointer-arithnatic-one.PNG

Page | 24

If Ptr1 & Ptr2 are properly declared and initialized, pointers then 'C' allows to subtract

integers from pointers. From the above example,

If Ptr1 & Ptr2 are properly declared and initialize pointers, and both points to the

elements of the same type. "Subtraction of one pointer from another pointer is also

possible".

NOTE: this operation is done when both pointer variable points to the elements of the same

array.

EX:

P2- P1 (It gives the number of elements between p1 and p2)

Pointer Increment and Scale Factor

We can use increment operator to increment the address of the pointer variable so that it

points to next memory location.

The value by which the address of the pointer variable will increment is not fixed. It

depends upon the data type of the pointer variable.

 For Example:

 int *ptr;

 ptr++;

http://www.atnyla.com/library/images-tutorials/c-pointer-arithnatic-two.PNG

Page | 25

It will increment the address of pointer variable by 2. So if the address of pointer

variable is 2000 then after increment it becomes 2002.

Thus the value by which address of the pointer variable increments is known as scale

factor. The scale factor is different for different data types as shown below:

Char 1 Byte

Int 2 Byte

Short int 2 Byte

Long int 4 Byte

Float 4 Byte

Double 8 Byte

Long double 10 Byte

---***---

Topic 8: Storage Classes

Every variable in C programming has two properties: type and storage class.
Type refers to the data type of a variable.
Each variable has a storage class which defines the features of that variable. It tells the
compiler about where to store the variable, its initial value, scope (visibility level) and
lifetime (global or local).
 Each variable has a storage class which define the following things:
Scopei.e where the value of the variable would be available inside a program.
default initial value i.e if we do not explicitly initialize that variable, what will be its
default initial value.
lifetime of that variable i.e for how long will that variable exist.
Thus a storage class is used to represent the information about a variable.
There are 4 types of storage class:-
automatic
external
static
register

Page | 26

automatic storage class:-
The default storage class of all local variables (variables declared inside block or function)
is auto storage class. Variable of auto storage class has the following properties...

Property Description

Keyword auto

Storage Computer Memory (RAM)

Default Value Garbage Value

Scope Local to the block in which the variable is defined

Life time Till the control remains within the block in which variable is defined

Example Program 1
#include<stdio.h>
#include<conio.h>
main()
{
 auto int a=10;
 {
 auto int a=20;
 printf("%d",a);
 }
 printf("\n%d",a);
 }
Output:-
20
10
External storage class:-
The default storage class of all global variables (variables declared outside function) is
external storage class. Variable of external storage class has the following properties...

Property Description

Keyword extern

Storage Computer Memory (RAM)

Default Value Zero

Scope Global to the program (i.e., Throughout the program)

Life time As long as the program’s execution does not comes to end

Page | 27

Example Program 1
int n=10;
int main()
{
printf("%d\t",n); -> Output: 10
n=n+10;
function1();
printf("%d\t",n); -> Output: 30
}

int function1()
{
printf("%d",n); -> Output: 20
n=n+ 10;
}
Output:-
10 20 30

Static storage class:-
Variable of static storage class has the following properties...

Property Description

Keyword static

Storage Computer Memory (RAM)

Default
Value

Zero

Scope Local to the block in which the variable is defined

Life time The value of the persists between different function calls (i.e., Initialization is
done only once)

Example Program 1
void function1()
{
static int n=0;
n++;
printf("%d1n",n);
}
int main()
{
int i;
for(i=0;i<3;i++)

Page | 28

funtion1();
}
Output:-
1
2
3

Register storage class:-
The register variables enable faster accessibility compared to other storage class variables.
As the number of registers inside the CPU is very less we can use very less number of
register variables. Variable of register storage class has the following properties...

Property Description

Keyword register

Storage CPU Register

Default Value Garbage Value

Scope Local to the block in which the variable is defined

Life time Till the control remains within the block in which variable is defined

Example Program 1
#include<stdio.h>
main()
{
 register int a=15;
 printf("%d”, a);
}
Output:-
15

Page | 29

Storage
Class Keyword

Memory
Location

Default
Value Scope Life Time

Automatic auto Computer
Memory
(RAM)

Garbage
Value

Local to the block
in which the
variable has
defined

Within function

External extern Computer
Memory
(RAM)

Zero Global to the
program (i.e.,
Throughout the
program)

Till the end of the
main program
Maybe declared
anywhere in the
program

Static static Computer
Memory
(RAM)

Zero Local to the block
in which the
variable has
defined

Till the end of the
main program,
Retains value
between multiple
functions call

Register register CPU
Register

Garbage
Value

Local to the block
in which the
variable has
defined

Within the function

Topic 9: Structures

INTRODUCTION TO STRUCTURES
consider following example:
An entity Student may have its name (string), roll number (int), marks (float).
To store such type of information regarding an entity student, we have the following
approaches:

 Construct individual arrays for storing names, roll numbers, and marks.
 Use a special data structure to store the collection of different data types.

Definition:- Structure is collection of elements of different datatypes.

Declaration of structure:-

The struct keyword is used to define the structure.

Page | 30

Syntax:-

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memeberN;

};

Let's see the example to define a structure for an entity employee in c.

struct employee

{ int id;

 char name[20];

 float salary;

};

The following image shows the memory allocation of the structure employee that is

defined in the above example.

Page | 31

Here, struct is the keyword; employee is the name of the structure; id, name, and salary are
the members or fields of the structure. Let's understand it by the diagram given below:

Declaring structure variable:-
We can declare a variable for the structure so that we can access the member of the
structure easily. There are two ways to declare structure variable:
By struct keyword within main() function
By declaring a variable at the time of defining the structure.
1st way:
Let's see the example to declare the structure variable by struct keyword. It should be
declared within the main function.
struct employee
{ int id;
 char name[50];
 float salary;
};
Now write given code inside the main() function.
struct employee e1, e2;
The variables e1 and e2 can be used to access the values stored in the structure. Here, e1
and e2 can be treated in the same way as the objects in C++ and Java.
2nd way:
Let's see another way to declare variable at the time of defining the structure.
struct employee
{ int id;
 char name[50];
 float salary;
}e1,e2;
Accessing members of the structure:-
There are two ways to access structure members:
By . (member or dot operator)
By -> (structure pointer operator)
Let's see the code to access the id member of p1 variable by. (member) operator.
p1.id

https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial

Page | 32

Initialization of structures:-
It can be done in 2 ways.

1) At the time of compilation
2) At the time of execution

At the time of compilation:-

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2; //declaring e1 and e2 variables for structure

main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 e1.salary=56000;

 //store second employee information

 e2.id=102;

 strcpy(e2.name, "James Bond");

 e2.salary=126000;

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

 printf("employee 1 salary : %f\n", e1.salary);

 //printing second employee information

 printf("employee 2 id : %d\n", e2.id);

 printf("employee 2 name : %s\n", e2.name);

 printf("employee 2 salary : %f\n", e2.salary);

}

Page | 33

Output:

employee 1 id : 101
employee 1 name : Sonoo Jaiswal
employee 1 salary : 56000.000000
employee 2 id : 102
employee 2 name : James Bond
employee 2 salary : 126000.000000

At the time of execution:-
#include <stdio.h>
#include <string.h>
struct Books
{
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
};
 main()
{
 struct Books b1; /* Declare Book1 of type Book */
 struct Books b2; /* Declare Book2 of type Book */
 printf("enter book1 details:\n");
 gets(b1.title);
 gets(b1.author);
 gets(b1.subject);
 scanf("%d",&b1.book_id);
 printf("enter book1 details:\n");
 gets(b2.title);
 gets(b2.author);
 gets(b2.subject);
 scanf("%d",&b2.book_id);
 /* print Book1 info */
 printf("Book 1 title : %s\n", b1.title);
 printf("Book 1 author : %s\n", b1.author);
 printf("Book 1 subject : %s\n", b1.subject);
 printf("Book 1 book_id : %d\n", b1.book_id);
 /* print Book2 info */
 printf("Book 2 title : %s\n", b2.title);
 printf("Book 2 author : %s\n", b2.author);
 printf("Book 2 subject : %s\n", b2.subject);
 printf("Book 2 book_id : %d\n", b2.book_id);
}

Page | 34

ARRAY OF STRUCTURES
Consider a case, where we need to store the data of 5 students. We can store it by
using the structure as given below.

struct student

{

 char name[20];

 int id;

 float marks;

};

struct student s1,s2,s3;

 However, the complexity of the program will be increased if there are 20 students. In
that case, we will have to declare 20 different structure variables and store them one
by one. However, c enables us to declare an array of structures.

An array of structres in C can be defined as the collection of multiple structures
variables where each variable contains information about different entities. The array of
structures is also known as the collection of structures.

Syntax:- struct tagname arrayname[size];
Ex:- struct student s[20];

Example Program:-

#include<stdio.h>
#include <string.h>
struct student
{
int rollno;
char name[10];
};
int main()
{
int i;
struct student st[5];
printf("Enter Records of 5 students");
for(i=0;i<5;i++)
{
printf("\nEnter Rollno:");
scanf("%d",&st[i].rollno);
printf("\nEnter Name:");
scanf("%s",&st[i].name);
}

https://www.javatpoint.com/c-programming-language-tutorial

Page | 35

printf("\nStudent Information List:");
for(i=0;i<5;i++)
{
printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);
}
 return 0;
}

Input & Output:

Enter Records of 5 students
Enter Rollno:1
Enter Name:Sonoo
Enter Rollno:2
Enter Name:Ratan
Enter Rollno:3
Enter Name:Vimal
Enter Rollno:4
Enter Name:James
Enter Rollno:5
Enter Name:Sarfraz

Student Information List:
Rollno:1, Name:Sonoo
Rollno:2, Name:Ratan
Rollno:3, Name:Vimal
Rollno:4, Name:James
Rollno:5, Name:Sarfraz

NESTED STRUCTURES
Structure within structure is known as nested structure.
The structure can be nested in the following ways.

1. By separate structure
2. By Embedded structure

1) Separate structure
Here, we create two structures, but the dependent structure should be used inside the main
structure as a member. Consider the following example.
struct Date
{
 int dd;
 int mm;
 int yyyy;
};

Page | 36

struct Employee
{
 int id;
 char name[20];
 struct Date doj;
}emp1;

2) Embedded structure
The embedded structure enables us to declare the structure inside the structure. Hence, it
requires less line of codes but it cannot be used in multiple data structures. Consider the
following example.
struct Employee
{
 int id;
 char name[20];
 struct Date
 {
 int dd;
 int mm;
 int yyyy;
 }doj;
}emp1;

Accessing Nested Structure:-

We can access the member of the nested structure by
Outer_Structure.Nested_Structure.member as given below:
e1.doj.dd
e1.doj.mm
e1.doj.yyyy

Example Program:-
#include <stdio.h>
#include <string.h>
struct Employee
{
 int id;
 char name[20];
 struct Date
 {
 int dd;
 int mm;
 int yyyy;
 }doj;
}e1;

Page | 37

int main()
{
 //storing employee information
 e1.id=101;
 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array
 e1.doj.dd=10;
 e1.doj.mm=11;
 e1.doj.yyyy=2014;

 //printing first employee information
 printf("employee id : %d\n", e1.id);
 printf("employee name : %s\n", e1.name);
 printf("employee date of joining (dd/mm/yyyy) : %d/%d/%d\n", e1.doj.dd,e1.doj.mm,e
1.doj.yyyy);
 return 0;
}

Output:
employee id : 101
employee name : Sonoo Jaiswal
employee date of joining (dd/mm/yyyy) : 10/11/2014

PASSING STRUCTURE TO FUNCTION IN C

It can be done in below 3 ways.

1. Passing structure to a function by value
2. Passing structure to a function by address(reference)
3. No need to pass a structure – Declare structure variable as global

EXAMPLE PROGRAM – PASSING STRUCTURE TO FUNCTION IN C BY VALUE:

In this program, the whole structure is passed to another function by value.
#include <stdio.h>
#include <string.h>
 struct student
{
 int id;
 char name[20];
 float percentage;
};
 void func(struct student record);

Page | 38

 int main()
{
 struct student record;

 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;
 func(record);
 return 0;
}

void func(struct student record)
{
 printf(" Id is: %d \n", record.id);
 printf(" Name is: %s \n", record.name);
 printf(" Percentage is: %f \n", record.percentage);
}
OUTPUT:

Id is: 1
Name is: Raju
Percentage is: 86.500000

EXAMPLE PROGRAM – PASSING STRUCTURE TO FUNCTION IN C BY ADDRESS:

In this program, the whole structure is passed to another function by address. It means
only the address of the structure is passed to another function.

#include <stdio.h>
#include <string.h>
 struct student
{
 int id;
 char name[20];
 float percentage;
};
void func(struct student *record);
 int main()
{
 struct student record;
 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;
 func(&record);
 return 0;
}

Page | 39

 void func(struct student *record)
{
 printf(" Id is: %d \n", record->id);
 printf(" Name is: %s \n", record->name);
 printf(" Percentage is: %f \n", record->percentage);
}

OUTPUT:

Id is: 1
Name is: Raju
Percentage is: 86.500000

EXAMPLE PROGRAM TO DECLARE A STRUCTURE VARIABLE AS GLOBAL IN C:

Structure variables also can be declared as global variables as we declare other variables in
C. So, When a structure variable is declared as global, then it is visible to all the functions in
a program.

#include <stdio.h>
#include <string.h>
 struct student
{
 int id;
 char name[20];
 float percentage;
};
struct student record; // Global declaration of structure
 void structure_demo();
 int main()
{
 record.id=1;
 strcpy(record.name, "Raju");
 record.percentage = 86.5;
 structure_demo();
 return 0;
}

void structure_demo()
{
 printf(" Id is: %d \n", record.id);
 printf(" Name is: %s \n", record.name);
 printf(" Percentage is: %f \n", record.percentage);
}

Page | 40

OUTPUT:

Id is: 1
Name is: Raju
Percentage is: 86.500000

TOPIC 10: UNION

Unions are conceptually similar to structures. Union is collection of elements of different
datatypes. The syntax to declare/define a union is also similar to that of a structure. The
only differences is in terms of storage. In structure each member has its own storage
location, whereas all members of union uses a single shared memory location which is
equal to the size of its largest data member.

A union is declared using the union keyword.

https://www.studytonight.com/c/structures-in-c.php
https://www.studytonight.com/c/keywords-and-identifier.php

Page | 41

Structure vs union

Page | 42

TOPIC 11: STRINGS

string can be defined as the one-dimensional array of characters terminated by a null
character('\0').
Each character in the array occupies one byte of memory, and the last character must
always be 0. The termination character ('\0') is important in a string since it is the only way
to identify where the string ends.

Declaration and Initialization of string:-

There are two ways to declare a string in c language.

1. By char array

2. By string literal

Let's see the example of declaring string by char array in C language.

1. char ch[10]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

As we know, array index starts from 0, so it will be represented as in the figure given
below.

While declaring string, size is not mandatory. So we can write the above code as given
below:

1. char ch[]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

We can also define the string by the string literal in C language. For example:

1. char ch[]="javatpoint";

In such case, '\0' will be appended at the end of the string by the compiler.

Page | 43

String Input: Read a String

When writing interactive programs which ask the user for input, C provides the scanf()

When we use scanf() to read, we use the "%s" format specifier without using the "&" to
access the variable address because an array name acts as a pointer. For example:

#include <stdio.h>
int main()

{
char name[10];

int age;
printf("Enter your first name and age: \n");

scanf("%s %d", name, &age);
printf("You entered: %s %d",name,age);

}

Input and Output:

Enter your first name and age:
John_Smith 48

The problem with the scanf function is that it never reads entire Strings in C. It will halt the
reading process as soon as whitespace, form feed, vertical tab, newline or a carriage return
occurs.

Suppose we give input as "GIST College" then the scanf function will never read an entire
string as a whitespace character occurs between the two names. The scanf function will
only read GIST.

In order to read a string contains spaces, we use the gets() function. Gets ignores the
whitespaces. It stops reading when a newline is reached (the Enter key is pressed).For
example:

#include <stdio.h>
int main()

 {
char full_name[25];

printf("Enter your full name: ");
gets(full_name);

printf("My full name is %s ",full_name);
return 0;

}

Page | 44

Input and Output:

Enter your full name: Dennis Ritchie

My full name is Dennis Ritchie

2d-array of charecters

The array of characters is called a string. “Hi”, “Hello”, and e.t.c are the examples of String.
Similarly, the array of Strings is nothing but a two-dimensional (2D) array of characters. To
declare an array of Strings in C, we must use the char data type
Declaration of the array of strings

Syntax:-

char string-array-name[row-size][column-size];

Here the first index (row-size) specifies the maximum number of strings in the array, and
the second index (column-size) specifies the maximum length of every individual string.

Example of two dimensional characters or the array of Strings is,

char language[5][10] = {"Java", "Python", "C++", "HTML", "SQL"};

Page | 45

TOPIC 12: STRING HANDLING FUNCTIONS

C programming language provides a set of pre-defined functions called string handling
functions to work with string values. The string handling functions are defined in a header
file called string.h. Whenever we want to use any string handling function we must include
the header file called string.h.

Function Syntax (or) Example Description

strcpy() strcpy(string1, string2) Copies string2 value into string1

strlen() strlen(string1) returns total number of characters in string1

strcat() strcat(string1,string2) Appends string2 to string1

strcmp() strcmp(string1,
string2)

Returns 0 if string1 and string2 are the same;
less than 0 if string1<string2; greater than 0 if
string1>string2

strlwr() strlwr(string1) Converts all the characters of string1 to lower case.

strupr() strupr(string1) Converts all the characters of string1 to upper case.

strrev() strrev(string1) It reverses the value of string1

strstr() strstr(string1, string2) Returns a pointer to the first occurrence of string2 in
string1

Page | 46

TOPIC 13:COMMAND LINE ARGUMENTS

The arguments passed from command line to main() function are called command line
arguments. These arguments are handled by main() function.

To support command line argument, you need to change the structure of main() function
as given below.

int main(int argc, char *argv[])

Here, argc counts the number of arguments. It counts the file name as the first argument.

The argv[] contains the total number of arguments. The first argument is the file name
always.

Example Program 1:-

#include <stdio.h>

void main(int argc, char *argv[])

{

 int i;

 printf(“total no.of arguments=%d”,argc);

 printf(“\n List of arguments are:\n”);

 for(i=1;i<argc;i++)

 {

Printf(“%s”,argv[i]);

 }

}
Example program 2:- atoi() is a library function that converts string to integer

#include <stdio.h>
int main(int argc, char *argv[])
{
 int a,b,sum;
 a = atoi(argv[1]);
 b = atoi(argv[2]);
 sum = a+b;
 printf("Sum of %d, %d is: %d\n",a,b,sum);
 return 0;
}

---***THE END***----

	Topic 2: Types of Functions
	There are two types of functions in C programming.
	Return Value
	How user-defined function works?
	Call by Value
	Call by Reference
	Get Value of variable Pointed by Pointers:-
	Syntax of malloc():
	Syntax of calloc():
	Syntax of free():

	realloc():- If the dynamically allocated memory is insufficient or more than required, you can change the size of previously allocated memory using the realloc() function.
	Syntax of realloc():-

	Pointer Assignments
	Program
	Output

	Pointer Arithmetic
	subtraction
	We cannot perform addition, multiplication and division operations on two pointer variables.

	Multiplication
	Division
	If Ptr1 and Ptr2 are properly declared and initialized pointers, then the following statements are valid:
	If Ptr1 and Ptr2 are properly declared and initialized pointers then, 'C' allows adding integers to a pointer variable.
	If Ptr1 & Ptr2 are properly declared and initialized, pointers then 'C' allows to subtract integers from pointers. From the above example,
	If Ptr1 & Ptr2 are properly declared and initialize pointers, and both points to the elements of the same type. "Subtraction of one pointer from another pointer is also possible".

	Pointer Increment and Scale Factor
	String Input: Read a String
	Declaration of the array of strings

